機械学習/MacでTensorFlowを使う
をテンプレートにして作成
開始行:
*はじめに [#ja3312a3]
ここでは、Googleが公開しているオープン・ソース・ソフトウ...
以前、TensorFlow 0.8用に書いたものを、TensorFlow 1.2用に...
*環境 [#kd6c49b9]
-macOS Sierra 10.12.5
-Python 3.5.1
-TensorFlow 1.2
*Python3のインストール(アップデート) [#zf2975fa]
まず、Python3を最新版にアップデートします。
下記のサイトから''Mac OS X 64-bit/32-bit installer''をダ...
-https://www.python.org/downloads/
*TensorFlowのインストール [#seb185d6]
基本的にはここに書いてある通りです。
-[[Installing TensorFlow on Mac OS X:https://www.tensorfl...
#geshi(sh){{
$ sudo easy_install pip
$ sudo pip3 install --upgrade pip
}}
*Virtualenvのインストール [#ab5cc2c7]
#geshi(sh){{
$ sudo pip3 install --upgrade virtualenv
$ virtualenv --system-site-packages -p python3 /Users/Sha...
$ source /Users/Shared/tools/tensorflow/bin/activate
(tensorflow)$ sudo pip3 install --upgrade tensorflow
(tensorflow)$ deactivate
}}
私の研究室では、共有フォルダーのtoolsというフォルダー (/U...
/Users/Shared/tools/tensorflow を ~/tensorflow などTensor...
*TensorFlowを動かす [#te2b5012]
TesorFlowのサイトに掲載されているサンプルを動かします。
-[[Getting Started With TensorFlow:https://www.tensorflow...
#geshi(sh){{
$ source /Users/Shared/tools/tensorflow/bin/activate
(tensorflow) $ python3
Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more...
}}
#geshi(python){{
>>> import tensorflow as tf
>>> node1 = tf.constant(3.0, dtype=tf.float32)
>>> node2 = tf.constant(4.0)
>>> sess = tf.Session()
2017-06-20 08:28:06.121472: W tensorflow/core/platform/cp...
2017-06-20 08:28:06.121492: W tensorflow/core/platform/cp...
2017-06-20 08:28:06.121498: W tensorflow/core/platform/cp...
2017-06-20 08:28:06.121502: W tensorflow/core/platform/cp...
>>> print(sess.run([node1, node2]))
[3.0, 4.0]
>>> node3 = tf.add(node1, node2)
>>> print(sess.run(node3))
7.0
>>> quit()
(tensorflow) $ deactivate
}}
tf.Seesion()の後に警告が出ているのは、CPUのオプション使う...
*TensorFlowでカテゴリー分析をやってみる [#ka2954e2]
TensorFlowの最初のチュートリアルは手書き数字認識のMNISTで...
**データの準備 [#p76609a7]
[[Irisデータセット:http://archive.ics.uci.edu/ml/datasets...
UCI Machine Learning Repositoryからファイル [[iris.data:h...
中身はこんな感じです。
#geshi(txt){{
$ head -5 iris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
}}
3クラスの分類なので、カテゴリーのラベルを3次元の0/1ベクト...
つまり、setosaは 1,0,0、versicolorは 0,1,0、virginicaは 0...
Irisデータセットには、それぞれ、50個ずつ150個のデータが並...
#geshi(sh){{
$ head -50 iris.data | awk -F, '{printf("%s,%s,%s,%s,1,0,...
$ head -100 iris.data | tail -50 | awk -F, '{printf("%s,%...
$ head -150 iris.data | tail -50 | awk -F, '{printf("%s,%...
}}
これで、データの準備は完了です。
このデータをdataフォルダーにおいておきます。
**カテゴリー分析用ソースコード [#xeaf4449]
TensorFlowのTutorialsについてる最初の手書き文字データセッ...
#ref(./tfc_iris.py)
#geshi(python){{
# Copyright 2016-2017 Tohgoroh Matsui All Rights Reserved.
#
# Changes:
# 2017-06-19 Changed for TensorFlow 1.2
#
#
# This includes software developed by Google, Inc.
# licensed under the Apache License, Version 2.0 (the 'Li...
# you may not use this file except in compliance with the...
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writi...
# distributed under the License is distributed on an 'AS ...
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex...
# See the License for the specific language governing per...
# limitations under the License.
import tensorflow as tf
import numpy as np
# パラメーター
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('samples', 120, 'Number of ...
flags.DEFINE_integer('max_steps', 1001, 'Number of ...
flags.DEFINE_float( 'learning_rate', 0.001, 'Initial le...
flags.DEFINE_float( 'dropout', 0.9, 'Keep proba...
flags.DEFINE_string( 'data_dir', 'data', 'Directory ...
flags.DEFINE_string( 'summaries_dir', 'log', 'Summaries ...
def train():
# CSVファイルの読み込み
data = np.genfromtxt(FLAGS.data_dir + '/iris.csv', deli...
# データをシャッフル
np.random.shuffle(data)
# 訓練データ (train) とテストデータ (test) に分割
x_train, x_test = np.vsplit(data[:,0:4].astype(np.float...
y_train, y_test = np.vsplit(data[:,4:7].astype(np.float...
# セッション
sess = tf.InteractiveSession()
# 入力
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, shape=[None, 4])
# 出力
with tf.name_scope('output'):
y_ = tf.placeholder(tf.float32, shape=[None, 3])
# ドロップアウトのキープ率
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_pr...
# 重み(係数)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# バイアス(定数項)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# for TensorBoard
def variable_summaries(var, name):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_sum(tf.square(var - me...
tf.summary.scalar('sttdev/' + name, stddev)
tf.summary.scalar('max/' + name, tf.reduce_max(var))
tf.summary.scalar('min/' + name, tf.reduce_min(var))
tf.summary.histogram(name, var)
# ニューラル・ネットワークの層
def nn_layer(input_tensor, input_dim, output_dim, layer...
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights, layer_name + '/weight...
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + ...
tf.summary.histogram(layer_name + '/pre_activatio...
activations = act(preactivate, name='activation')
tf.summary.histogram(layer_name + '/acctivations', ...
return activations
# 入力層
hidden1 = nn_layer(x, 4, 64, 'layer1')
dropped1 = tf.nn.dropout(hidden1, keep_prob)
# 中間層
hidden2 = nn_layer(dropped1, 64, 64, 'layer2')
dropped2 = tf.nn.dropout(hidden2, keep_prob)
# 出力層
y = nn_layer(dropped2, 64, 3, 'layer3', act=tf.nn.softm...
# クロス・エントロピー
with tf.name_scope('cross_entropy'):
#diff = y_ * tf.log(y)
#with tf.name_scope('total'):
# cross_entropy = -tf.reduce_mean(diff)
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_v...
tf.summary.scalar('cross entropy', cross_entropy)
# 学習
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(FLAGS.learning_ra...
# 精度
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.a...
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_predictio...
tf.summary.scalar('accuracy', accuracy)
# for TensorBoard
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_di...
test_writer = tf.summary.FileWriter(FLAGS.summaries_di...
tf.global_variables_initializer().run()
# データとドロップアウト・キープ率の切り替え
def feed_dict(train):
if train:
xs, ys = x_train, y_train
k = FLAGS.dropout
else:
xs, ys = x_test, y_test
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
# 学習ルーチン
for i in range(FLAGS.max_steps):
# 学習
sess.run(train_step, feed_dict=feed_dict(True))
# 訓練データに対する評価
summary, acc, cp = sess.run([merged, accuracy, cross_...
train_writer.add_summary(summary, i)
# テスト・データに対する評価
summary, acc, cp = sess.run([merged, accuracy, cross_...
test_writer.add_summary(summary, i)
if i == 0 or i % np.power(10, np.floor(np.log10(i))) ...
print('Accuracy and Cross-Entropy at step %s: %s, %...
def main(_):
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
train()
if __name__ == '__main__':
tf.app.run()
}}
mnist_with_summaries.pyからいくつか変更点があります。
-iris.csvからデータを読み込む
-データをシャッフルして120個を訓練データに、残りの30個を...
-入力は4次元、出力は3次元
-中間層(活性化関数はReLU)を追加
-入力層は4x64ユニット、中間層は64x64ユニット、出力層は64x...
-クロス・エントロピーの定義を変更(元の定義だとNaNになっ...
-10回中9回学習して1回テストを行うのではなく、毎回学習とテ...
-標準出力に精度とクロス・エントロピーを出力
**実行 [#f0d2b637]
#geshi(sh){{
(tensorflow) $ python3 tfc_iris.py
2017-06-19 18:32:23.449363: W tensorflow/core/platform/cp...
2017-06-19 18:32:23.449387: W tensorflow/core/platform/cp...
2017-06-19 18:32:23.449393: W tensorflow/core/platform/cp...
2017-06-19 18:32:23.449398: W tensorflow/core/platform/cp...
Accuracy and Cross-Entropy at step 0: 0.366667, 31.8714
Accuracy and Cross-Entropy at step 1: 0.3, 31.5792
Accuracy and Cross-Entropy at step 2: 0.3, 31.289
Accuracy and Cross-Entropy at step 3: 0.3, 31.0007
Accuracy and Cross-Entropy at step 4: 0.3, 30.7225
Accuracy and Cross-Entropy at step 5: 0.333333, 30.4467
Accuracy and Cross-Entropy at step 6: 0.4, 30.1522
Accuracy and Cross-Entropy at step 7: 0.5, 29.8428
Accuracy and Cross-Entropy at step 8: 0.566667, 29.5071
Accuracy and Cross-Entropy at step 9: 0.633333, 29.1437
Accuracy and Cross-Entropy at step 10: 0.666667, 28.7539
Accuracy and Cross-Entropy at step 20: 0.666667, 24.4503
Accuracy and Cross-Entropy at step 30: 0.666667, 19.725
Accuracy and Cross-Entropy at step 40: 0.666667, 15.7528
Accuracy and Cross-Entropy at step 50: 0.866667, 13.1522
Accuracy and Cross-Entropy at step 60: 0.9, 11.3919
Accuracy and Cross-Entropy at step 70: 0.933333, 9.89667
Accuracy and Cross-Entropy at step 80: 0.933333, 8.50913
Accuracy and Cross-Entropy at step 90: 0.933333, 7.18226
Accuracy and Cross-Entropy at step 100: 0.933333, 6.18636
Accuracy and Cross-Entropy at step 200: 0.933333, 4.82435
Accuracy and Cross-Entropy at step 300: 0.933333, 4.7089
Accuracy and Cross-Entropy at step 400: 0.933333, 5.20262
Accuracy and Cross-Entropy at step 500: 0.933333, 6.28935
Accuracy and Cross-Entropy at step 600: 0.933333, 6.46973
Accuracy and Cross-Entropy at step 700: 0.933333, 6.57728
Accuracy and Cross-Entropy at step 800: 0.933333, 7.21051
Accuracy and Cross-Entropy at step 900: 0.933333, 7.32343
Accuracy and Cross-Entropy at step 1000: 0.933333, 7.07634
}}
最初に出ている警告は、CPUのオプションを使って高速に計算で...
このオプションを使うには、TensorFlowをソースコードからビ...
**TensorBoardによるログの確認 [#nd118cd7]
TensorBoardでログを確認します。
次のようにしてTensorBoardを起動すると、6006番ポートでHTTP...
#geshi(sh){{
(tensorflow) $ tensorboard --logdir=log
}}
Webブラウザーで http://localhost:6006 にアクセスします。
#ref(./tfc_iris.png,nolink,50%)
*TensorFlowで回帰分析をやってみる [#d6ec9fd8]
次に、Housingデータセットで回帰分析をやってみます。
**データの準備 [#l2dbe849]
[[Housingデータセット:http://archive.ics.uci.edu/ml/datas...
UCI Machine Learning Repositoryから、 [[housing.data:http...
中身はこんな感じです。
#geshi(sh){{
$ head -5 housing.data
0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900...
0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671...
0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671...
0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622...
0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622...
}}
これをコンマ区切りのCSVファイルに変換します。
#geshi(sh){{
$ sed "s/^ //" < housing.data | sed "s/ */,/g" > housing...
}}
これで、データの準備は完了です。 このデータをdataフォルダ...
**回帰分析用ソースコード [#a6c1ec07]
カテゴリー分析用のソースコードを一部変更して作成した回帰...
#ref(./tfr_housing.py)
#geshi(python){{
# Copyright 2016-2017 Tohgoroh Matsui All Rights Reserved.
#
# Changes:
# 2017-06-19 Changed for TensorFlow 1.2
#
#
# This includes software developed by Google, Inc.
# licensed under the Apache License, Version 2.0 (the 'Li...
# you may not use this file except in compliance with the...
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writi...
# distributed under the License is distributed on an 'AS ...
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex...
# See the License for the specific language governing per...
# limitations under the License.
import tensorflow as tf
import numpy as np
# パラメーター
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('samples', 400, 'Number of ...
flags.DEFINE_integer('max_steps', 1001, 'Number of ...
flags.DEFINE_float( 'learning_rate', 0.001, 'Initial le...
flags.DEFINE_float( 'dropout', 0.9, 'Keep proba...
flags.DEFINE_string( 'data_dir', 'data', 'Directory ...
flags.DEFINE_string( 'summaries_dir', 'log', 'Summaries ...
def train():
# CSVファイルの読み込み
data = np.genfromtxt(FLAGS.data_dir + '/housing.csv', d...
# データをシャッフル
np.random.shuffle(data)
# 学習データ (train) とテストデータ (test) に分割
x_train, x_test = np.vsplit(data[:, 0:13].astype(np.flo...
y_train, y_test = np.vsplit(data[:,13:14].astype(np.flo...
# セッション
sess = tf.InteractiveSession()
# 入力
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, shape=[None, 13])
# 出力
with tf.name_scope('output'):
y_ = tf.placeholder(tf.float32, shape=[None, 1])
# ドロップアウトのキープ率
with tf.name_scope('dropout'):
keep_prob = tf.placeholder("float")
tf.summary.scalar('dropout_keep_probability', keep_pr...
# 重み(係数)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# バイアス(定数項)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# for TensorBoard
def variable_summaries(var, name):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_sum(tf.square(var - me...
tf.summary.scalar('sttdev/' + name, stddev)
tf.summary.scalar('max/' + name, tf.reduce_max(var))
tf.summary.scalar('min/' + name, tf.reduce_min(var))
tf.summary.histogram(name, var)
# ニューラル・ネットワークの層
def nn_layer(input_tensor, input_dim, output_dim, layer...
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights, layer_name + '/weight...
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + ...
tf.summary.histogram(layer_name + '/pre_activatio...
if relu:
activations = tf.nn.relu(preactivate, name='activ...
else:
activations = preactivate
tf.summary.histogram(layer_name + '/acctivations', ...
return activations
# 入力層
hidden1 = nn_layer(x, 13, 64, 'layer1')
dropped1 = tf.nn.dropout(hidden1, keep_prob)
# 中間層
hidden2 = nn_layer(dropped1, 64, 64, 'layer2')
dropped2 = tf.nn.dropout(hidden2, keep_prob)
# 出力層
y = nn_layer(dropped2, 64, 1, 'layer3', relu=False)
# 損失
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.square(y_ - y))
tf.summary.scalar('loss', loss)
# 学習
with tf.name_scope('train'):
train_step = tf.train.AdagradOptimizer(FLAGS.learning...
# for TensorBoard
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_di...
test_writer = tf.summary.FileWriter(FLAGS.summaries_di...
tf.global_variables_initializer().run()
# データとドロップアウト・キープ率の切り替え
def feed_dict(train):
if train:
xs, ys = x_train, y_train
k = FLAGS.dropout
else:
xs, ys = x_test, y_test
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
# 学習ルーチン
for i in range(FLAGS.max_steps):
# 学習
sess.run(train_step, feed_dict=feed_dict(True))
# 訓練データに対する評価
summary, train_loss = sess.run([merged, loss], feed_d...
train_writer.add_summary(summary, i)
# テスト・データに対する評価
summary, test_loss, est = sess.run([merged, loss, y],...
test_writer.add_summary(summary, i)
if i == 0 or i % np.power(10, np.floor(np.log10(i))) ...
print('Train loss and test loss at step %s: %s, %s'...
def main(_):
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
train()
if __name__ == '__main__':
tf.app.run()
}}
カテゴリー分析用のソースコードからの変更点は以下のような...
-housing.csvからデータを読み込む
-訓練データを400個、残りをテスト・データに
-入力ユニット13個、出力ユニット1個
-出力層の活性化関数はなし(線形和をそのまま出力)
-目的関数は平均二乗誤差
-最適化アルゴリズムはAdagradOptimizer
**実行 [#sf335df5]
#geshi(sh){{
(tensorflow) $ python3 tfr_housing.py
2017-06-19 19:18:56.446456: W tensorflow/core/platform/cp...
2017-06-19 19:18:56.446483: W tensorflow/core/platform/cp...
2017-06-19 19:18:56.446489: W tensorflow/core/platform/cp...
2017-06-19 19:18:56.446494: W tensorflow/core/platform/cp...
Train loss and test loss at step 0: 224.93, 130.847
Train loss and test loss at step 1: 183.852, 85.3385
Train loss and test loss at step 2: 168.604, 68.0674
Train loss and test loss at step 3: 148.723, 60.0659
Train loss and test loss at step 4: 133.088, 56.0457
Train loss and test loss at step 5: 136.931, 53.1182
Train loss and test loss at step 6: 130.554, 51.7777
Train loss and test loss at step 7: 133.33, 50.4604
Train loss and test loss at step 8: 124.398, 49.5372
Train loss and test loss at step 9: 153.345, 48.7853
Train loss and test loss at step 10: 126.658, 48.1853
Train loss and test loss at step 20: 131.693, 44.5592
Train loss and test loss at step 30: 115.671, 43.4062
Train loss and test loss at step 40: 112.891, 43.2623
Train loss and test loss at step 50: 113.978, 43.1277
Train loss and test loss at step 60: 114.35, 43.1381
Train loss and test loss at step 70: 96.5845, 43.1183
Train loss and test loss at step 80: 102.218, 43.1819
Train loss and test loss at step 90: 105.793, 43.2823
Train loss and test loss at step 100: 105.103, 43.2404
Train loss and test loss at step 200: 96.8645, 42.1962
Train loss and test loss at step 300: 81.3204, 40.8889
Train loss and test loss at step 400: 75.9416, 40.0916
Train loss and test loss at step 500: 83.1751, 39.7313
Train loss and test loss at step 600: 77.3653, 39.0446
Train loss and test loss at step 700: 71.6672, 38.6893
Train loss and test loss at step 800: 74.5351, 38.3223
Train loss and test loss at step 900: 76.4663, 37.7926
Train loss and test loss at step 1000: 66.521, 37.3258
}}
**TensorBoardによるログの確認 [#hd935499]
カテゴリー分析と同じです。
#geshi(sh){{
(tensorflow) $ tensorboard --logdir=log
}}
#ref(./tfr_housing.png,nolink,50%)
終了行:
*はじめに [#ja3312a3]
ここでは、Googleが公開しているオープン・ソース・ソフトウ...
以前、TensorFlow 0.8用に書いたものを、TensorFlow 1.2用に...
*環境 [#kd6c49b9]
-macOS Sierra 10.12.5
-Python 3.5.1
-TensorFlow 1.2
*Python3のインストール(アップデート) [#zf2975fa]
まず、Python3を最新版にアップデートします。
下記のサイトから''Mac OS X 64-bit/32-bit installer''をダ...
-https://www.python.org/downloads/
*TensorFlowのインストール [#seb185d6]
基本的にはここに書いてある通りです。
-[[Installing TensorFlow on Mac OS X:https://www.tensorfl...
#geshi(sh){{
$ sudo easy_install pip
$ sudo pip3 install --upgrade pip
}}
*Virtualenvのインストール [#ab5cc2c7]
#geshi(sh){{
$ sudo pip3 install --upgrade virtualenv
$ virtualenv --system-site-packages -p python3 /Users/Sha...
$ source /Users/Shared/tools/tensorflow/bin/activate
(tensorflow)$ sudo pip3 install --upgrade tensorflow
(tensorflow)$ deactivate
}}
私の研究室では、共有フォルダーのtoolsというフォルダー (/U...
/Users/Shared/tools/tensorflow を ~/tensorflow などTensor...
*TensorFlowを動かす [#te2b5012]
TesorFlowのサイトに掲載されているサンプルを動かします。
-[[Getting Started With TensorFlow:https://www.tensorflow...
#geshi(sh){{
$ source /Users/Shared/tools/tensorflow/bin/activate
(tensorflow) $ python3
Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more...
}}
#geshi(python){{
>>> import tensorflow as tf
>>> node1 = tf.constant(3.0, dtype=tf.float32)
>>> node2 = tf.constant(4.0)
>>> sess = tf.Session()
2017-06-20 08:28:06.121472: W tensorflow/core/platform/cp...
2017-06-20 08:28:06.121492: W tensorflow/core/platform/cp...
2017-06-20 08:28:06.121498: W tensorflow/core/platform/cp...
2017-06-20 08:28:06.121502: W tensorflow/core/platform/cp...
>>> print(sess.run([node1, node2]))
[3.0, 4.0]
>>> node3 = tf.add(node1, node2)
>>> print(sess.run(node3))
7.0
>>> quit()
(tensorflow) $ deactivate
}}
tf.Seesion()の後に警告が出ているのは、CPUのオプション使う...
*TensorFlowでカテゴリー分析をやってみる [#ka2954e2]
TensorFlowの最初のチュートリアルは手書き数字認識のMNISTで...
**データの準備 [#p76609a7]
[[Irisデータセット:http://archive.ics.uci.edu/ml/datasets...
UCI Machine Learning Repositoryからファイル [[iris.data:h...
中身はこんな感じです。
#geshi(txt){{
$ head -5 iris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
}}
3クラスの分類なので、カテゴリーのラベルを3次元の0/1ベクト...
つまり、setosaは 1,0,0、versicolorは 0,1,0、virginicaは 0...
Irisデータセットには、それぞれ、50個ずつ150個のデータが並...
#geshi(sh){{
$ head -50 iris.data | awk -F, '{printf("%s,%s,%s,%s,1,0,...
$ head -100 iris.data | tail -50 | awk -F, '{printf("%s,%...
$ head -150 iris.data | tail -50 | awk -F, '{printf("%s,%...
}}
これで、データの準備は完了です。
このデータをdataフォルダーにおいておきます。
**カテゴリー分析用ソースコード [#xeaf4449]
TensorFlowのTutorialsについてる最初の手書き文字データセッ...
#ref(./tfc_iris.py)
#geshi(python){{
# Copyright 2016-2017 Tohgoroh Matsui All Rights Reserved.
#
# Changes:
# 2017-06-19 Changed for TensorFlow 1.2
#
#
# This includes software developed by Google, Inc.
# licensed under the Apache License, Version 2.0 (the 'Li...
# you may not use this file except in compliance with the...
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writi...
# distributed under the License is distributed on an 'AS ...
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex...
# See the License for the specific language governing per...
# limitations under the License.
import tensorflow as tf
import numpy as np
# パラメーター
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('samples', 120, 'Number of ...
flags.DEFINE_integer('max_steps', 1001, 'Number of ...
flags.DEFINE_float( 'learning_rate', 0.001, 'Initial le...
flags.DEFINE_float( 'dropout', 0.9, 'Keep proba...
flags.DEFINE_string( 'data_dir', 'data', 'Directory ...
flags.DEFINE_string( 'summaries_dir', 'log', 'Summaries ...
def train():
# CSVファイルの読み込み
data = np.genfromtxt(FLAGS.data_dir + '/iris.csv', deli...
# データをシャッフル
np.random.shuffle(data)
# 訓練データ (train) とテストデータ (test) に分割
x_train, x_test = np.vsplit(data[:,0:4].astype(np.float...
y_train, y_test = np.vsplit(data[:,4:7].astype(np.float...
# セッション
sess = tf.InteractiveSession()
# 入力
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, shape=[None, 4])
# 出力
with tf.name_scope('output'):
y_ = tf.placeholder(tf.float32, shape=[None, 3])
# ドロップアウトのキープ率
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_pr...
# 重み(係数)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# バイアス(定数項)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# for TensorBoard
def variable_summaries(var, name):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_sum(tf.square(var - me...
tf.summary.scalar('sttdev/' + name, stddev)
tf.summary.scalar('max/' + name, tf.reduce_max(var))
tf.summary.scalar('min/' + name, tf.reduce_min(var))
tf.summary.histogram(name, var)
# ニューラル・ネットワークの層
def nn_layer(input_tensor, input_dim, output_dim, layer...
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights, layer_name + '/weight...
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + ...
tf.summary.histogram(layer_name + '/pre_activatio...
activations = act(preactivate, name='activation')
tf.summary.histogram(layer_name + '/acctivations', ...
return activations
# 入力層
hidden1 = nn_layer(x, 4, 64, 'layer1')
dropped1 = tf.nn.dropout(hidden1, keep_prob)
# 中間層
hidden2 = nn_layer(dropped1, 64, 64, 'layer2')
dropped2 = tf.nn.dropout(hidden2, keep_prob)
# 出力層
y = nn_layer(dropped2, 64, 3, 'layer3', act=tf.nn.softm...
# クロス・エントロピー
with tf.name_scope('cross_entropy'):
#diff = y_ * tf.log(y)
#with tf.name_scope('total'):
# cross_entropy = -tf.reduce_mean(diff)
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_v...
tf.summary.scalar('cross entropy', cross_entropy)
# 学習
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(FLAGS.learning_ra...
# 精度
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.a...
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_predictio...
tf.summary.scalar('accuracy', accuracy)
# for TensorBoard
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_di...
test_writer = tf.summary.FileWriter(FLAGS.summaries_di...
tf.global_variables_initializer().run()
# データとドロップアウト・キープ率の切り替え
def feed_dict(train):
if train:
xs, ys = x_train, y_train
k = FLAGS.dropout
else:
xs, ys = x_test, y_test
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
# 学習ルーチン
for i in range(FLAGS.max_steps):
# 学習
sess.run(train_step, feed_dict=feed_dict(True))
# 訓練データに対する評価
summary, acc, cp = sess.run([merged, accuracy, cross_...
train_writer.add_summary(summary, i)
# テスト・データに対する評価
summary, acc, cp = sess.run([merged, accuracy, cross_...
test_writer.add_summary(summary, i)
if i == 0 or i % np.power(10, np.floor(np.log10(i))) ...
print('Accuracy and Cross-Entropy at step %s: %s, %...
def main(_):
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
train()
if __name__ == '__main__':
tf.app.run()
}}
mnist_with_summaries.pyからいくつか変更点があります。
-iris.csvからデータを読み込む
-データをシャッフルして120個を訓練データに、残りの30個を...
-入力は4次元、出力は3次元
-中間層(活性化関数はReLU)を追加
-入力層は4x64ユニット、中間層は64x64ユニット、出力層は64x...
-クロス・エントロピーの定義を変更(元の定義だとNaNになっ...
-10回中9回学習して1回テストを行うのではなく、毎回学習とテ...
-標準出力に精度とクロス・エントロピーを出力
**実行 [#f0d2b637]
#geshi(sh){{
(tensorflow) $ python3 tfc_iris.py
2017-06-19 18:32:23.449363: W tensorflow/core/platform/cp...
2017-06-19 18:32:23.449387: W tensorflow/core/platform/cp...
2017-06-19 18:32:23.449393: W tensorflow/core/platform/cp...
2017-06-19 18:32:23.449398: W tensorflow/core/platform/cp...
Accuracy and Cross-Entropy at step 0: 0.366667, 31.8714
Accuracy and Cross-Entropy at step 1: 0.3, 31.5792
Accuracy and Cross-Entropy at step 2: 0.3, 31.289
Accuracy and Cross-Entropy at step 3: 0.3, 31.0007
Accuracy and Cross-Entropy at step 4: 0.3, 30.7225
Accuracy and Cross-Entropy at step 5: 0.333333, 30.4467
Accuracy and Cross-Entropy at step 6: 0.4, 30.1522
Accuracy and Cross-Entropy at step 7: 0.5, 29.8428
Accuracy and Cross-Entropy at step 8: 0.566667, 29.5071
Accuracy and Cross-Entropy at step 9: 0.633333, 29.1437
Accuracy and Cross-Entropy at step 10: 0.666667, 28.7539
Accuracy and Cross-Entropy at step 20: 0.666667, 24.4503
Accuracy and Cross-Entropy at step 30: 0.666667, 19.725
Accuracy and Cross-Entropy at step 40: 0.666667, 15.7528
Accuracy and Cross-Entropy at step 50: 0.866667, 13.1522
Accuracy and Cross-Entropy at step 60: 0.9, 11.3919
Accuracy and Cross-Entropy at step 70: 0.933333, 9.89667
Accuracy and Cross-Entropy at step 80: 0.933333, 8.50913
Accuracy and Cross-Entropy at step 90: 0.933333, 7.18226
Accuracy and Cross-Entropy at step 100: 0.933333, 6.18636
Accuracy and Cross-Entropy at step 200: 0.933333, 4.82435
Accuracy and Cross-Entropy at step 300: 0.933333, 4.7089
Accuracy and Cross-Entropy at step 400: 0.933333, 5.20262
Accuracy and Cross-Entropy at step 500: 0.933333, 6.28935
Accuracy and Cross-Entropy at step 600: 0.933333, 6.46973
Accuracy and Cross-Entropy at step 700: 0.933333, 6.57728
Accuracy and Cross-Entropy at step 800: 0.933333, 7.21051
Accuracy and Cross-Entropy at step 900: 0.933333, 7.32343
Accuracy and Cross-Entropy at step 1000: 0.933333, 7.07634
}}
最初に出ている警告は、CPUのオプションを使って高速に計算で...
このオプションを使うには、TensorFlowをソースコードからビ...
**TensorBoardによるログの確認 [#nd118cd7]
TensorBoardでログを確認します。
次のようにしてTensorBoardを起動すると、6006番ポートでHTTP...
#geshi(sh){{
(tensorflow) $ tensorboard --logdir=log
}}
Webブラウザーで http://localhost:6006 にアクセスします。
#ref(./tfc_iris.png,nolink,50%)
*TensorFlowで回帰分析をやってみる [#d6ec9fd8]
次に、Housingデータセットで回帰分析をやってみます。
**データの準備 [#l2dbe849]
[[Housingデータセット:http://archive.ics.uci.edu/ml/datas...
UCI Machine Learning Repositoryから、 [[housing.data:http...
中身はこんな感じです。
#geshi(sh){{
$ head -5 housing.data
0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900...
0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671...
0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671...
0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622...
0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622...
}}
これをコンマ区切りのCSVファイルに変換します。
#geshi(sh){{
$ sed "s/^ //" < housing.data | sed "s/ */,/g" > housing...
}}
これで、データの準備は完了です。 このデータをdataフォルダ...
**回帰分析用ソースコード [#a6c1ec07]
カテゴリー分析用のソースコードを一部変更して作成した回帰...
#ref(./tfr_housing.py)
#geshi(python){{
# Copyright 2016-2017 Tohgoroh Matsui All Rights Reserved.
#
# Changes:
# 2017-06-19 Changed for TensorFlow 1.2
#
#
# This includes software developed by Google, Inc.
# licensed under the Apache License, Version 2.0 (the 'Li...
# you may not use this file except in compliance with the...
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writi...
# distributed under the License is distributed on an 'AS ...
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex...
# See the License for the specific language governing per...
# limitations under the License.
import tensorflow as tf
import numpy as np
# パラメーター
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('samples', 400, 'Number of ...
flags.DEFINE_integer('max_steps', 1001, 'Number of ...
flags.DEFINE_float( 'learning_rate', 0.001, 'Initial le...
flags.DEFINE_float( 'dropout', 0.9, 'Keep proba...
flags.DEFINE_string( 'data_dir', 'data', 'Directory ...
flags.DEFINE_string( 'summaries_dir', 'log', 'Summaries ...
def train():
# CSVファイルの読み込み
data = np.genfromtxt(FLAGS.data_dir + '/housing.csv', d...
# データをシャッフル
np.random.shuffle(data)
# 学習データ (train) とテストデータ (test) に分割
x_train, x_test = np.vsplit(data[:, 0:13].astype(np.flo...
y_train, y_test = np.vsplit(data[:,13:14].astype(np.flo...
# セッション
sess = tf.InteractiveSession()
# 入力
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, shape=[None, 13])
# 出力
with tf.name_scope('output'):
y_ = tf.placeholder(tf.float32, shape=[None, 1])
# ドロップアウトのキープ率
with tf.name_scope('dropout'):
keep_prob = tf.placeholder("float")
tf.summary.scalar('dropout_keep_probability', keep_pr...
# 重み(係数)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# バイアス(定数項)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# for TensorBoard
def variable_summaries(var, name):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_sum(tf.square(var - me...
tf.summary.scalar('sttdev/' + name, stddev)
tf.summary.scalar('max/' + name, tf.reduce_max(var))
tf.summary.scalar('min/' + name, tf.reduce_min(var))
tf.summary.histogram(name, var)
# ニューラル・ネットワークの層
def nn_layer(input_tensor, input_dim, output_dim, layer...
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights, layer_name + '/weight...
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + ...
tf.summary.histogram(layer_name + '/pre_activatio...
if relu:
activations = tf.nn.relu(preactivate, name='activ...
else:
activations = preactivate
tf.summary.histogram(layer_name + '/acctivations', ...
return activations
# 入力層
hidden1 = nn_layer(x, 13, 64, 'layer1')
dropped1 = tf.nn.dropout(hidden1, keep_prob)
# 中間層
hidden2 = nn_layer(dropped1, 64, 64, 'layer2')
dropped2 = tf.nn.dropout(hidden2, keep_prob)
# 出力層
y = nn_layer(dropped2, 64, 1, 'layer3', relu=False)
# 損失
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.square(y_ - y))
tf.summary.scalar('loss', loss)
# 学習
with tf.name_scope('train'):
train_step = tf.train.AdagradOptimizer(FLAGS.learning...
# for TensorBoard
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_di...
test_writer = tf.summary.FileWriter(FLAGS.summaries_di...
tf.global_variables_initializer().run()
# データとドロップアウト・キープ率の切り替え
def feed_dict(train):
if train:
xs, ys = x_train, y_train
k = FLAGS.dropout
else:
xs, ys = x_test, y_test
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
# 学習ルーチン
for i in range(FLAGS.max_steps):
# 学習
sess.run(train_step, feed_dict=feed_dict(True))
# 訓練データに対する評価
summary, train_loss = sess.run([merged, loss], feed_d...
train_writer.add_summary(summary, i)
# テスト・データに対する評価
summary, test_loss, est = sess.run([merged, loss, y],...
test_writer.add_summary(summary, i)
if i == 0 or i % np.power(10, np.floor(np.log10(i))) ...
print('Train loss and test loss at step %s: %s, %s'...
def main(_):
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
train()
if __name__ == '__main__':
tf.app.run()
}}
カテゴリー分析用のソースコードからの変更点は以下のような...
-housing.csvからデータを読み込む
-訓練データを400個、残りをテスト・データに
-入力ユニット13個、出力ユニット1個
-出力層の活性化関数はなし(線形和をそのまま出力)
-目的関数は平均二乗誤差
-最適化アルゴリズムはAdagradOptimizer
**実行 [#sf335df5]
#geshi(sh){{
(tensorflow) $ python3 tfr_housing.py
2017-06-19 19:18:56.446456: W tensorflow/core/platform/cp...
2017-06-19 19:18:56.446483: W tensorflow/core/platform/cp...
2017-06-19 19:18:56.446489: W tensorflow/core/platform/cp...
2017-06-19 19:18:56.446494: W tensorflow/core/platform/cp...
Train loss and test loss at step 0: 224.93, 130.847
Train loss and test loss at step 1: 183.852, 85.3385
Train loss and test loss at step 2: 168.604, 68.0674
Train loss and test loss at step 3: 148.723, 60.0659
Train loss and test loss at step 4: 133.088, 56.0457
Train loss and test loss at step 5: 136.931, 53.1182
Train loss and test loss at step 6: 130.554, 51.7777
Train loss and test loss at step 7: 133.33, 50.4604
Train loss and test loss at step 8: 124.398, 49.5372
Train loss and test loss at step 9: 153.345, 48.7853
Train loss and test loss at step 10: 126.658, 48.1853
Train loss and test loss at step 20: 131.693, 44.5592
Train loss and test loss at step 30: 115.671, 43.4062
Train loss and test loss at step 40: 112.891, 43.2623
Train loss and test loss at step 50: 113.978, 43.1277
Train loss and test loss at step 60: 114.35, 43.1381
Train loss and test loss at step 70: 96.5845, 43.1183
Train loss and test loss at step 80: 102.218, 43.1819
Train loss and test loss at step 90: 105.793, 43.2823
Train loss and test loss at step 100: 105.103, 43.2404
Train loss and test loss at step 200: 96.8645, 42.1962
Train loss and test loss at step 300: 81.3204, 40.8889
Train loss and test loss at step 400: 75.9416, 40.0916
Train loss and test loss at step 500: 83.1751, 39.7313
Train loss and test loss at step 600: 77.3653, 39.0446
Train loss and test loss at step 700: 71.6672, 38.6893
Train loss and test loss at step 800: 74.5351, 38.3223
Train loss and test loss at step 900: 76.4663, 37.7926
Train loss and test loss at step 1000: 66.521, 37.3258
}}
**TensorBoardによるログの確認 [#hd935499]
カテゴリー分析と同じです。
#geshi(sh){{
(tensorflow) $ tensorboard --logdir=log
}}
#ref(./tfr_housing.png,nolink,50%)
ページ名: