機械学習/MacでTensorFlowを使う のバックアップ(No.7)


はじめに

ここでは、Googleが公開しているオープン・ソース・ソフトウェア (OSS) のTensorFlowをMac (OS X) にインストールして使います。

環境

  • OS X Yosemite 10.10.5
  • Python 3.5.1
  • TensorFlow 0.7

Python3のインストール(アップグレード)

まず、Python3を最新版にアップグレードします。 下記のサイトからMac OS X 64-bit/32-bit installerをダウンロードして、インストール。

TensorFlowのインストール

基本的にはここに書いてある通りなんですが、なぜかsixのeasy_installが先にできなかったので、順序を逆にしました。

$ sudo easy_install pip
$ sudo pip3 install --upgrade pip

Virtualenvのインストール

$ sudo pip3 install --upgrade virtualenv
$ virtualenv --system-site-packages -p python3 /Users/Shared/tools/tensorflow
$ source /Users/Shared/tools/tensorflow/bin/activate
(tensorflow)$ sudo pip3 install --upgrade tensorflow
(tensorflow)$ deactivate

私の研究室では、共有フォルダーのtoolsというフォルダー (/Users/Shared/tools/) に、みんなで使うツールをインストールしています。 /Users/Shared/tools/tensorflow を ~/tensorflow などTensorFlowをインストールしたいフォルダーに変更してください。

TensorFlowを動かす

TesorFlowのサイトに掲載されているHello Worldを動かします。

  • Test the TensorFlow installation - TensorFlow
    $ source /Users/Shared/tools/tensorflow/bin/activate
    (tensorflow) $ python3
    Python 3.5.1 (v3.5.1:37a07cee5969, Dec  5 2015, 21:12:44) 
    [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
    Type "help", "copyright", "credits" or "license" for more information.

TensorFlowでIrisをやってみる

TensorFlowの最初のチュートリアルは手書き数字認識のMNISTですが、irisデータセットで分類をやってみます。

データの準備

irisデータセットは、4つの説明変数(花びらの長さ、幅、がく片の長さ、幅)とカテゴリー (setosa, versicolor, virginica) からなるデータセットです。

UCI Machine Learning Repositoryからファイル iris.data をダウンロードします。 中身はこんな感じです。

>>> import tensorflow as tf
>>> node1 = tf.constant(3.0, dtype=tf.float32)
>>> node2 = tf.constant(4.0) 
>>> sess = tf.Session()
2017-06-20 08:28:06.121472: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-20 08:28:06.121492: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-06-20 08:28:06.121498: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-20 08:28:06.121502: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
>>> print(sess.run([node1, node2]))
[3.0, 4.0]
>>> node3 = tf.add(node1, node2)
>>> print(sess.run(node3))
7.0
>>> quit()
(tensorflow) $ deactivate

3クラスの分類なので、カテゴリーのラベルを3次元の0/1ベクトルに変換します。 つまり、setosaは 1,0,0、versicolorは 0,1,0、virginicaは 0,0,1 とします。

irisデータには、それぞれ、50個ずつ150個のデータが並んでいるので、次のように変換します。

$ head -5 iris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa

これで、データの準備は完了です。 このデータをdataフォルダーにおいておきます。

分類用ソースコード

TensorFlowのTutorialsについてる最初の手書き文字データセットMNIST用のサンプルをほとんどそのまま使ったソースコードはこんな感じです。

$ head -50 iris.data | awk -F, '{printf("%s,%s,%s,%s,1,0,0\n",$1,$2,$3,$4);}' > iris.csv
$ head -100 iris.data | tail -50 | awk -F, '{printf("%s,%s,%s,%s,0,1,0\n",$1,$2,$3,$4);}' >> iris.csv
$ head -150 iris.data | tail -50 | awk -F, '{printf("%s,%s,%s,%s,0,0,1\n",$1,$2,$3,$4);}' >> iris.csv

MNISTからいくつか変更点があります。

  • iris.csvからデータを読み込む
  • データをシャッフルして120個を訓練データに、残りの30個をテスト・データにする
  • 入力は4次元、出力は3次元
  • 中間層(活性化関数はReLU)を追加
  • 入力層は4x64ユニット、中間層は64x64ユニット、出力層は64x3ユニット
  • クロス・エントロピーの定義を変更(元の定義だとNaNになってしまうことがあるため)
  • TensorBoardにグラフを出力しない(エラーになってしまうため)
  • 10回中9回学習して1回テストを行うのではなく、毎回学習とテストを行う
  • 標準出力に精度とクロス・エントロピーを出力

実行

# Copyright 2016-2017 Tohgoroh Matsui All Rights Reserved.
#
# Changes:
# 2017-06-19 Changed for TensorFlow 1.2
#
#
# This includes software developed by Google, Inc.
# licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf
import numpy as np


# パラメーター
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('samples',       120,    'Number of training samples.')
flags.DEFINE_integer('max_steps',     1001,   'Number of steps to run trainer.')
flags.DEFINE_float(  'learning_rate', 0.001,  'Initial learning rate.')
flags.DEFINE_float(  'dropout',       0.9,    'Keep probability for training dropout.')
flags.DEFINE_string( 'data_dir',      'data', 'Directory for storing data.')
flags.DEFINE_string( 'summaries_dir', 'log',  'Summaries directory.')


def train():
  # CSVファイルの読み込み
  data = np.genfromtxt(FLAGS.data_dir + '/iris.csv', delimiter=",")

  # データをシャッフル
  np.random.shuffle(data)

  # 訓練データ (train) とテストデータ (test) に分割
  x_train, x_test = np.vsplit(data[:,0:4].astype(np.float32), [FLAGS.samples])
  y_train, y_test = np.vsplit(data[:,4:7].astype(np.float32), [FLAGS.samples])


  # セッション
  sess = tf.InteractiveSession()

  # 入力
  with tf.name_scope('input'):
    x  = tf.placeholder(tf.float32, shape=[None, 4])

  # 出力
  with tf.name_scope('output'):
    y_ = tf.placeholder(tf.float32, shape=[None, 3])

  # ドロップアウトのキープ率
  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    tf.summary.scalar('dropout_keep_probability', keep_prob)

  # 重み(係数)
  def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

  # バイアス(定数項)
  def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

  # for TensorBoard
  def variable_summaries(var, name):
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean/' + name, mean)
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
      tf.summary.scalar('sttdev/' + name, stddev)
      tf.summary.scalar('max/' + name, tf.reduce_max(var))
      tf.summary.scalar('min/' + name, tf.reduce_min(var))
      tf.summary.histogram(name, var)


  # ニューラル・ネットワークの層
  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    with tf.name_scope(layer_name):
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights, layer_name + '/weights')
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases, layer_name + '/biases')
      with tf.name_scope('Wx_plus_b'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.summary.histogram(layer_name + '/pre_activations', preactivate)
      activations = act(preactivate, name='activation')
      tf.summary.histogram(layer_name + '/acctivations', activations)
      return activations


  # 入力層
  hidden1 = nn_layer(x, 4, 64, 'layer1')
  dropped1 = tf.nn.dropout(hidden1, keep_prob)

  # 中間層
  hidden2 = nn_layer(dropped1, 64, 64, 'layer2')
  dropped2 = tf.nn.dropout(hidden2, keep_prob)

  # 出力層
  y = nn_layer(dropped2, 64, 3, 'layer3', act=tf.nn.softmax)


  # クロス・エントロピー
  with tf.name_scope('cross_entropy'):
    #diff = y_ * tf.log(y)
    #with tf.name_scope('total'):
    #  cross_entropy = -tf.reduce_mean(diff)
    cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))
    tf.summary.scalar('cross entropy', cross_entropy)

  # 学習
  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(cross_entropy)

  # 精度
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)


  # for TensorBoard
  merged = tf.summary.merge_all()
  train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph)
  test_writer  = tf.summary.FileWriter(FLAGS.summaries_dir + '/test')
  tf.global_variables_initializer().run()


  # データとドロップアウト・キープ率の切り替え
  def feed_dict(train):
    if train:
      xs, ys = x_train, y_train
      k  = FLAGS.dropout
    else:
      xs, ys = x_test, y_test
      k  = 1.0
    return {x: xs, y_: ys, keep_prob: k}


  # 学習ルーチン
  for i in range(FLAGS.max_steps):
    # 学習
    sess.run(train_step, feed_dict=feed_dict(True))
    # 訓練データに対する評価
    summary, acc, cp = sess.run([merged, accuracy, cross_entropy], feed_dict=feed_dict(True))
    train_writer.add_summary(summary, i)
    # テスト・データに対する評価
    summary, acc, cp = sess.run([merged, accuracy, cross_entropy], feed_dict=feed_dict(False))
    test_writer.add_summary(summary, i)
    if i == 0 or i % np.power(10, np.floor(np.log10(i))) == 0:
      print('Accuracy and Cross-Entropy at step %s: %s, %s' % (i, acc, cp))


def main(_):
  if tf.gfile.Exists(FLAGS.summaries_dir):
    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
  tf.gfile.MakeDirs(FLAGS.summaries_dir)
  train()

if __name__ == '__main__':
  tf.app.run()

TensorBoardによるログの確認

TensorBoardでログを確認します。

次のようにしてTensorBoardを起動すると、6006番ポートでHTTPサーバーが起動します。

(tensorflow) $ python3 tfc_iris.py
2017-06-19 18:32:23.449363: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-19 18:32:23.449387: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-06-19 18:32:23.449393: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-19 18:32:23.449398: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Accuracy and Cross-Entropy at step 0: 0.366667, 31.8714
Accuracy and Cross-Entropy at step 1: 0.3, 31.5792
Accuracy and Cross-Entropy at step 2: 0.3, 31.289
Accuracy and Cross-Entropy at step 3: 0.3, 31.0007
Accuracy and Cross-Entropy at step 4: 0.3, 30.7225
Accuracy and Cross-Entropy at step 5: 0.333333, 30.4467
Accuracy and Cross-Entropy at step 6: 0.4, 30.1522
Accuracy and Cross-Entropy at step 7: 0.5, 29.8428
Accuracy and Cross-Entropy at step 8: 0.566667, 29.5071
Accuracy and Cross-Entropy at step 9: 0.633333, 29.1437
Accuracy and Cross-Entropy at step 10: 0.666667, 28.7539
Accuracy and Cross-Entropy at step 20: 0.666667, 24.4503
Accuracy and Cross-Entropy at step 30: 0.666667, 19.725
Accuracy and Cross-Entropy at step 40: 0.666667, 15.7528
Accuracy and Cross-Entropy at step 50: 0.866667, 13.1522
Accuracy and Cross-Entropy at step 60: 0.9, 11.3919
Accuracy and Cross-Entropy at step 70: 0.933333, 9.89667
Accuracy and Cross-Entropy at step 80: 0.933333, 8.50913
Accuracy and Cross-Entropy at step 90: 0.933333, 7.18226
Accuracy and Cross-Entropy at step 100: 0.933333, 6.18636
Accuracy and Cross-Entropy at step 200: 0.933333, 4.82435
Accuracy and Cross-Entropy at step 300: 0.933333, 4.7089
Accuracy and Cross-Entropy at step 400: 0.933333, 5.20262
Accuracy and Cross-Entropy at step 500: 0.933333, 6.28935
Accuracy and Cross-Entropy at step 600: 0.933333, 6.46973
Accuracy and Cross-Entropy at step 700: 0.933333, 6.57728
Accuracy and Cross-Entropy at step 800: 0.933333, 7.21051
Accuracy and Cross-Entropy at step 900: 0.933333, 7.32343
Accuracy and Cross-Entropy at step 1000: 0.933333, 7.07634

Webブラウザーで http://localhost:6006 にアクセスします。

#ref(): File not found: "iris_c.png" at page "機械学習/MacでTensorFlowを使う"

トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS