このページはまだ書きかけです

はじめに

準備

データ

> data(iris)

主成分分析を実行する

主成分分析を実行

> iris[sort(sample(1:150,10)),]
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
4            4.6         3.1          1.5         0.2     setosa
22           5.1         3.7          1.5         0.4     setosa
65           5.6         2.9          3.6         1.3 versicolor
97           5.7         2.9          4.2         1.3 versicolor
100          5.7         2.8          4.1         1.3 versicolor
108          7.3         2.9          6.3         1.8  virginica
116          6.4         3.2          5.3         2.3  virginica
122          5.6         2.8          4.9         2.0  virginica
136          7.7         3.0          6.1         2.3  virginica
146          6.7         3.0          5.2         2.3  virginica

主成分分析の結果

> iris.pc <- princomp(~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width, data=iris, cor=T)

固有ベクトル

> iris.pc
Call:
princomp(formula = ~Sepal.Length + Sepal.Width + Petal.Length + 
    Petal.Width, data = iris, cor = T)

Standard deviations:
   Comp.1    Comp.2    Comp.3    Comp.4 
1.7083611 0.9560494 0.3830886 0.1439265 

 4  variables and  150 observations.
> summary(iris.pc)
Importance of components:
                          Comp.1    Comp.2     Comp.3      Comp.4
Standard deviation     1.7083611 0.9560494 0.38308860 0.143926497
Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709
Cumulative Proportion  0.7296245 0.9581321 0.99482129 1.000000000

固有値

> unclass(iris.pc$loadings)
                 Comp.1      Comp.2     Comp.3     Comp.4
Sepal.Length  0.5210659 -0.37741762  0.7195664  0.2612863
Sepal.Width  -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length  0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width   0.5648565 -0.06694199 -0.6342727  0.5235971

因子寄与率(主成分寄与率)

> iris.pc$sd^2
    Comp.1     Comp.2     Comp.3     Comp.4 
2.91849782 0.91403047 0.14675688 0.02071484 

因子負荷量(主成分負荷量)

> iris.pc$scores
         Comp.1       Comp.2       Comp.3       Comp.4
1   -2.26470281 -0.480026597  0.127706022  0.024168204
2   -2.08096115  0.674133557  0.234608854  0.103006775
3   -2.36422905  0.341908024 -0.044201485  0.028377053
4   -2.29938422  0.597394508 -0.091290106 -0.065955560
5   -2.38984217 -0.646835383 -0.015738196 -0.035922813
...

tは行列などを転置する関する,drop=F は行列と表示するオプション.

主成分分析の結果をグラフに表示する

> biplot(iris.pc)
トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS